Phonematic Translation of Polish Texts by the Neural Network

نویسندگان

  • A. Bielecki
  • I. T. Podolak
  • J. Wosiek
چکیده

Using the backpropagation algorithm, we have trained the feed forward neural network to pronounce Polish language, more precisely to translate Polish text into its phonematic counterpart. Depending on the input coding and network architecture, 88%-95% translation eeciency was achieved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural-based machine translation for medical text domain. Based on European Medicines Agency leaflet texts

The quality of machine translation is rapidly evolving. Today one can find several machine translation systems on the web that provide reasonable translations, although the systems are not perfect. In some specific domains, the quality may decrease. A recently proposed approach to this domain is neural machine translation. It aims at building a jointly-tuned single neural network that maximizes...

متن کامل

Landforms identification using neural network-self organizing map and SRTM data

During an 11 days mission in February 2000 the Shuttle Radar Topography Mission (SRTM) collected data over 80% of the Earth's land surface, for all areas between 60 degrees N and 56 degrees S latitude. Since SRTM data became available, many studies utilized them for application in topography and morphometric landscape analysis. Exploiting SRTM data for recognition and extraction of topographic ...

متن کامل

Polish -English Statistical Machine Translation of Medical Texts

This new research explores the effects of various training methods on a Polish to English Statistical Machine Translation system for medical texts. Various elements of the EMEA parallel text corpora from the OPUS project were used as the basis for training of phrase tables and language models and for development, tuning and testing of the translation system. The BLEU, NIST, METEOR, RIBES and TE...

متن کامل

Synthetic and Natural Noise Both Break Neural Machine Translation

Character-based neural machine translation (NMT) models alleviate out-ofvocabulary issues, learn morphology, and move us closer to completely end-toend translation systems. Unfortunately, they are also very brittle and easily falter when presented with noisy data. In this paper, we confront NMT models with synthetic and natural sources of noise. We find that state-of-the-art models fail to tran...

متن کامل

A Comparative Study of English-Persian Translation of Neural Google Translation

Many studies abroad have focused on neural machine translation and almost all concluded that this method was much closer to humanistic translation than machine translation. Therefore, this paper aimed at investigating whether neural machine translation was more acceptable in English-Persian translation in comparison with machine translation. Hence, two types of text were chosen to be translated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007